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Abstract

Several techniques for arbitrary shape recovery from scanned data
attempt to recognize and further regularize shape. For arbitrary
shape, one can recognize several shape features which should be
guided with global shape parameters. Smoothed curves and sur-
faces created with subdivision can visually improve recovery when
overall smoothness is expected. Local features such as sharp edges
are not preserved during smoothing. In this paper we show proce-
dural approach to preserve such features while globally smoothing
shape. Weighted filters are applied according to local shape varia-
tions. For flat and smooth areas, weighted mean face is dominant.
Sharp features are detected with normal difference variation and
dominated by nearest face normal. After suggested face normals
are calculaced, vertices are moved by simplified version of nonlin-
ear diffusion. Performance of proposed method is compared with
other methods for mesh smoothing and edge creasing on ”CAD”
and ”media” models.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Hierarchy and geometric transfor-
mations

Keywords: triangular meshes, mesh smoothing, shape recovery,
feature detection

1 Introduction

Triangle meshes are extensively used to represent 2-manifold
meshes as the only reliable approximation of continuous surface.
Scanners which produce large amount of point sets also introduce
noise and sampling errors which make the reconstructed surface
ragged. Large point sets are typically irregularly sampled and
non uniformly distributed. Improvement of such scans is desired
for many applications. Noise present in every acquisition method
should be removed while preserving important features such as
sharp edges and corners.

With large number of acquired points from 3D scanner, post-
processing reduce dense areas of points to prescribed density and
thus introduces artifacts on edges. On decimated and uniformly dis-
tributed meshes this is seen as high frequency noise in the position
of the vertices. Denoising can be applied by just adjusting vertex
positions. Such approach preserves connectivity and topology of
the mesh if vertices are uniformly distributed over the mesh.

1.1 Related work

Many surface fairing methods have been proposed in recent years.
One of the first signal processing application on meshes was intro-
duced by [Taubin 1995]. Laplacian smoothing is applied to move
vertices while compensating mesh shrinkage[Taubin 2000]. Each
vertex move is calculated by factor λ/µ to the barycenter of its
neighboring vertices. Common way to attenuate noise in mesh is
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through an isotropic diffusion process with implicit surface. Non
equal edge lengths can be compensated by weights as proposed
by [Desbrun et al. 1999]. Constraints on vertex move can be soft
(weighted) or hard. Vertex move for important features can be con-
strained with marking by user, but this is tedious job for most ap-
plications.

To delineate high frequency noise from low frequency features, one
can use weighted smoothing for different directions. [Meyer et al.
2003] uses anisotropic smoothing technique based on mean curva-
ture flow (MCF) to preserve edges over principal curvatures κ1 and
κ2.

Smoothing weight at vertex xi is defined as:

wi =



1 if |κ1| ≤ T and |κ2| ≤ T

0 if |κ1|> T and |κ2|> T

and κ1κ2 > 0
κ1/κH if |κ1|= min(|κ1|, |κ2|, |κH |)
κ2/κH if |κ2|= min(|κ1|, |κ2|, |κH |)
−1 if |κH |= min(|κ1|, |κ2|, |κH |)

with user defined edge thresholding parameter T .

Anisotropic smoothing methods [Taubin 2001; Liu et al. 2002; Des-
brun et al. 1999; Hildebrandt and Polthier 2006] were developed to
preserve and enhance mesh features while denoising the surface.

Figure 1: Top left: 16× 16× 16 cube as a triangle mesh with 0.3
median edge length noise added. Top right: After smoothing with
iterative mean filter. Bottom left: After smoothing by weighted
median filter. Some corners are not recovered. Bottom right: After
smoothing with feature sensivity.

Rather than computing per-vertex displacement which takes into
account only small region covered by vertex (called star or um-
brella), one can assume that face normals should be adjusted. This
gives larger region and solves many convergence problems. [Taubin
2001] analyzed existence and uniqueness of a solution to the prob-
lem of updating vertex positions given a field of face normals.
In general no solution exists. Taubin proposed least-squares op-
timization method to minimize over-constrained system. [Shen and



Barner 2004] used this method for fuzzy median filtered surface
normals.

[Yagou et al. 2002] showed interesting approach with recalculation
of surface normals and then applying vertex move by simplified ver-
sion of nonlinear diffusion proposed by [Ohtake et al. 2001]. This
nonlinear diffusion tends to crease sharp edges. It has been shown
by our test to be more effective and stable than iterative approach
with mean square error as shown in [Shen and Barner 2004].

Recently [Chen and Cheng 2005] suggested to apply different filters
based on local sharpness measure to further improve corners. Simi-
larly [Sun et al. 2002] computed edge strength and applied weighted
vertex step size to umbrella.

Figure 1 shows some features of each algorithm on synthetic cube
mesh. Median filter is applied to angles and besides sharp edges,
corners are known to be problematic. Median filter applied on ob-
servation window Ω = {x1,x2, ...,xN ∈ℜ} where N is the window
size is defined as

xMED = argmin
x

N

∑
i=1

|x− xi| .

Median filtering requires sorting of window samples x1,x2, ...,xN

such that x(1) < x(2) < ... < x(N). In such ordered samples, median

value is selected as xMED = x( N+1
2

). Extending this to face normals

one can use angle between vectors [Shen and Barner 2004; Yagou
et al. 2002], to select nearest normal:

nAMED = argmin
n∈Ω

N

∑
i=1

A(n,ni) . (1)

Proposed algorithm: In this paper, we extend the concepts of
different smoothing algorithms when features are detected by mea-
sure of face neighborhood as proposed by [Chen and Cheng 2005].
Algorithm works in two steps. First we calculate weighted mean
normals on triangle faces. Then we show how newly assigned face
normals are used to move triangle vertices. Finally, we describe
how different filter are applied to different surface areas in order
to preserve important features. Applying different smoothing tech-
niques based on mesh variance measure is more procedurally de-
scribed in section 3.

2 Background

We begin with brief overview of triangle mesh smoothing theory
used in our algorithm. Although face averaging on whole mesh
do not produce sharp features, it is useful for areas with little vari-
ations. We extend mean face normals averaging with a weighted
mean filter.

2.1 Face normals averaging

For mesh consisting of triangles T and normal n(T ) on each triangle
have neighboring triangles N (T ) with at least one common ver-
tex. Unit normal n(T ) on each triangle is calculated with normal-
ized cross product from oriented triangle vertices. Averaged normal
m(T ) can be computed as weighted normal sum of all neighboring
triangles N (T ):

m(T ) = ∑
S∈N (T )

w(S)A(S)n(S) , (2)

where A(S) is neighboring triangle area and w(S) corresponding
weight.
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Figure 2: Left:Averaging face normal m(T ) of triangle T from
neighboring normals n(S). Right: Allocating weights to triangles.

Figure 2 shows how can weights be allocated to adjacent triangles
with common edge.

Resulting averaged vectors must be normalized as

m(T )←− m(T )
||m(T )||

(3)

to be useful for further processing.

2.2 Vertex update

Difference between triangle normal n(T ) and averaged m(T ) are
adjusted with simplified nonlinear diffusion proposed in [Ohtake
et al. 2001].

P

C

m(T )

Figure 3: Updating vertex P in opposite direction of m(T ) weighted
by area of triangle and projected distance of centroid C from P.

Vertex P is adjusted by set of updated neighboring face normals
m(T ) with the following procedure

P′ = P+
1

∑A(T ) ∑
T∈N (P)

w(T )m(T ) , (4)

w(T ) = A(T )
[

~PC ·m(T )
]

. (5)

Weight w(T ) is a weighted projection of vector ~PC on m(T ). This
(negative) weight tries to move point P in direction opposite to
m(T ) and thus aligns triangle normal n(T ) with adjusted m(T ).
Triangle centroid C is computed from triangle vertices Pi, P j and
Pk as

C =
Pi +P j +Pk

3
. (6)

If n(T ) and m(T ) are close, then P is not moved. Such diffusion
can crease edges if face normals m(T ) are properly assigned. As
edges do not collapse and go round, mesh volume is also preserved.



2.3 Feature detection

In order to delineate piecewise smooth surfaces one has to prior de-
lineate features such as edges and corners. Detecting surface vari-
ation can be done with principal curvatures using vertex as refer-
ence [Meyer et al. 2003] or calculated curvature over triangle face
[Rusinkiewicz 2004]. Median filter is known to preserve edges, but
can fail on corners. [Gonzalez and Woods 2002] showed for image
processing, that min filter (nearest filter) preserves corners on im-
age. Except for sharp features min filter does not have smoothing
properties. Thus it is reasonable to apply different filter according
to different local mesh properties. For face neighboring triangles
N (T ) surface variation is calculated as:

si =
1

N
∑

j∈N (T )
(||ni−n j||−ni,MED)2 , (7)

where nMED is median normal distance between triangle T and N

neighboring triangles N (T ) calculated with the following equa-
tion:

ni,MED = arg min
ni∈N (T )

N

∑
j=1

||ni−n j|| , (8)

where || · || denotes Euclidean distance norm. Note that we do not
use mean value, but rather median distance, for measuring shape
variance. Median filtering has been shown that it is more resistant
to outliers in mesh.

Figure 4: Histogram of normal distance variance for noisy cube
shown in Figure 1.

Face normal distance variance is used to distinguish between sharp
areas and smooth one. Figure 4 shows histogram of normal distance
variance (7) normalized to [0..100] range. Histogram shows that
major areas are smooth and that sharp features can be detected by
setting threshold value sth > 15. Influence of different smoothing
algorithms depending on detected feature should be also smooth.
This means that there should be mesh area where two filter have
influence. We choose linear transient function for filter influence,
described in detail in section 3.

2.4 Preprocessing

Before we continue we consult general requirements for described
algorithms. As one might suspect, mesh smoothing works well
for uniformly distributed mesh model. For non-uniform distributed
model and meshes with connectivity problems, preprocessing is re-
quired to prepare mesh for further processing. [Lee et al. 1998]

showed how to construct smooth parametrization of irregular con-
nectivity triangulation of arbitrary genus 2-manifolds.

We assume that 1-ring neighborhood is enough for detection of fea-
tures. This assumption can be satisfied in advance with proper
scanning or later with reparametrization. Preprocessing step also
requires checks for mesh problems such as mesh crossover, holes
and outliers. See [Guskov and Wood 2001] for example how to deal
with mesh topological problems.

3 Algorithm

As mentioned earlier, our method for feature preserving mesh
smoothing is based on feature dependent filter. To extend this to
the case of ranking filter we first describe how face normals are se-
lected and how vertices are moved, then show how feature measure
is applied to weighted filter selection. Finally, we describe how
algorithm applies into iterative loop.

Geometry database requires to have associativity of vertex and face
connectivity. Additionally each vertex requires list of adjacent faces
and each triangle face requires list of 1-ring faces as shown in figure
2.

Based on algorithms introduced in previous section we give proce-
dural description of the mesh correction algorithm:

1. Compute averaged normal m(T ) for each triangle T using
equation (2). Averaged normals should be normalized as sug-
gested by Eq. (3). This normals will be used for smooth ar-
eas.

2. For 1-ring neighborhood N (T ) of each triangle T determine
closest face normal ei from all neighboring normals n j, j ∈
N (T ).

ei = min(||n j−ni||) (9)

Resulting normal ei will be used for areas with sharp features.

3. Calculate feature measure si, for each face from variance of
the distance i-th face normal and neighboring face normals
using equation (7). This shape variation is used to delineate
which normal is dominantly selected. Transient areas are de-
termined with the following weighted function.

4. Compute new face normal for each triangle by applying
weighted feature dependent function

ni = W (si)mi +(1−W (si))ei (10)

where W (s) is Gaussian weighting function

W (s) = exp(− s2

2σ2
) , (11)

with user-defined standard deviation σ which can be esti-
mated from histogram like one shown in figure 4. Normalize
resulting vector

ni←−
ni

||ni||
.

This step results with new suggested normals ni which should
be satisfied as close as possible with vertex move.

5. Update each triangle vertex using equation (4). This com-
pletes one iteration of the shape recovery process.

6. Iterate previous steps until convergence. This step can use
various convergence norms. In simplest case, predefined
number of iterations can be prescribed. Usually 30 iterations
is enough for most cases.
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Figure 5: Comparison of smoothing algorithms on the fandisk
model that has a vanishing ridge. All subfigures presented here use
the same vertex update algorithm from section 2.2: (a) The original
model (Courtesy of H.Hoppe). (b) Mesh corrupted with Gaussian
noise (20% of median edge length). (c) Mean face normals smooth-
ing [Yagou et al. 2002] applied. Noise is removed on the expense
of round edges. (d) Angle median algorithm[Yagou et al. 2002] us-
ing weighted median filter with weights as shown in figure 2. Note
that some edges collapsed together and that curved areas are piece-
wise flat and not smooth. (e) Feature dependent filter described
in section 3 with user-defined σ2 = 0.003 preserves corners and
edges while smoothing large curved and flat areas. (f) With change
of σ2 = 0.0005 one can also fine tune reconstruction of vanishing
edge which smoothly changes from sharp to smooth.

4 Results and Discussion

Several synthetic meshes ranging from single cube to more com-
plex shapes with sharp features were generated for testing at differ-
ent noise levels. Other models with known accurate surface (such
as Fandisk model) as well as scanned models were evaluated with
error metrics and visual performance. With the user defined fea-
ture detection parameters we were able to successfully delineate
sharp edges and smooth areas. Measuring error is not well estab-
lished in literature when feature preserving is concerned. For ”me-
dia” models there are well established error metrics for triangular
meshes [Cignoni et al. 1998]. Noise-added synthetic models have
advantage that we can use also other error metrics such as L2, angu-
lar or volume change. Most authors [Clarenz et al. 2004; Fleishman
et al. 2005] rely on visual fairness of recovered shapes. We follow
this practice giving examples of our method potentials on standard
test meshes.

Figure 5 shows fandisk mesh selected for algorithm strength
demonstration. Original fandisk mesh with a vanishing ridge was
corrupted with zero mean Gaussian noise by 20% median edge
length vertex move. With such corrupted mesh, vanishing ridge
looses its sharpness in the middle. Then this mesh was processed
with several algorithms for comparison. Mean smoothing algo-
rithms [Taubin 2000; Yagou et al. 2002] are well suited when there
are no features to preserve. Most non-artificial models and scanned
statues, such as Stanford Scanning Repository, fall in this category.
Angle median filter [Yagou et al. 2002] applied on fandisk mesh in
figure 5d shows that it tends to converge into flat patches even there
is evident that most patches should be smooth. Changing the same
median algorithm from angle to curvature helps within smooth ar-
eas but fails on preserving edges and corners. Vanishing edge with
angle median algorithm seems to be preserved, but details show that
this edge is not contiguous.

Our feature preserving algorithm measures edge variance and aligns
face normals according to neighborhood variation and balances in-
fluence of two competing basic algorithms. With varying parameter
σ in equation (11) vanishing edge in figure 5e and 5f shows that
even smoothness can be controlled. It should be noted that useful
σ range is hard to determine although [Chen and Cheng 2005] for
similar approach suggest Bayesian classifier. From our experience,
most helpful is variance histogram as one shown in figure 4. Mesh
tessellation and triangle (non) uniformity have impact on most sur-
face fairing algorithms.

Additional tests in appendix show problems with some algorithms
on synthetic CAD models with irregular tessellation and mesh con-
figuration. This is due to non uniform and long triangles. Thin sur-
faces can also be problematic for most algorithms. It was verified
that our algorithm is free of such configurations.

Another tests performed were on media meshes such as finger skin
detail in figure 8 with 375000 triangles. This mesh shows that most
of the averaging algorithms performs well with high density scans
without evident noise. Media models normally do not have/require
sharp edges, but when additional edge enhancement is required, our
method can also perform well.

Computational complexity of the algorithm shows that there are no
trigonometric functions and that algorithm can be used for quick
in-place computation. Possibly in graphics hardware computation
(GPU pipeline). Weighting function (10) can be further extended to
piecewise smooth transfer function and thus additionally lowering
complexity.



5 Conclusion

Our feature preserving algorithm showed that filtering noise with
weighted edge marking can result in sharp resultant mesh. The pro-
posed procedure is mathematically tractable, stable, and fast as no
trigonometric functions are used. Robustness of the algorithm was
tested on many different meshes to prove its general applicability
even when such mesh processing is not clearly evident. Algorithm
is free of degenerate configurations, and yields stable convergence
where some algorithms fail. Standard deviation σ is the only user-
defined parameter required can also be automatically selected. Ad-
ditionally some heuristics for flat surfaces should be included when
such scans are commonly acquired. Perhaps most interesting ques-
tion for future is how to incorporate additional procedural feature
detection into specific models and how such local feature sensivity
performs on general meshes.
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A Comparison of algorithms on synthetic
and scanned objects

The following figures show some additional tests for various trian-
gular mesh configurations with emphasized thin triangles, low/high
density tessellation and detail of finger without added noise.

(a) (b)



(c) (d)

(e) (f)

Figure 6: U-joint sample shows that only feature dependent method
regularize mesh. Mean and angle median methods do not con-
verge. (a) Original model. (b) Model with applied noise shows
long triangles. (c) Seven iterations of λ − µ smoothing [Taubin
1995]. (d) Mean face normals smoothing [Yagou et al. 2002] ap-
plied. Failed to converge due to non-baloon geometry. (e) Angle
median algorithm[Yagou et al. 2002] using weighted median filter
fails. (f) Feature dependent filter described in section 3 with user-
defined σ2 = 0.003 preserves corners and edges while smoothing
large curved and flat areas.

(a) (b)

(c)
(d)

(e) (f)

Figure 7: Turbine fan sample shows that that only feature depen-
dent method is able to preserve thin structures. (a) Original model.
(b) Model with applied noise that change blade thickness. (c) Five
iterations of λ − µ smoothing [Taubin 1995]. (d) Mean face nor-
mals smoothing [Yagou et al. 2002] applied. (e) Angle median al-
gorithm[Yagou et al. 2002] using weighted median filter attempts to
average central part. (f) Feature dependent filter described in sec-
tion 3 preserves corners and edges while smoothing large curved
and flat areas.

(a) (b)

(c) (d)

(e)

Figure 8: Finger skin detail: (a) Original model with dense mesh
with no evident or added noise. (b) Taubin λ − µ smoothing
[Taubin 1995] with 30 iterations performs fairly well with smooth-
ing out noise. (c) Mean face normals smoothing tends to smooth
out most of the skin details.. (d) Angle median algorithm[Yagou
et al. 2002] converges to flat surfaces with sharp edges. (e) Feature
dependent filter enhances some edges while removes others.


