














deflection that underestimates a in the “uncertainty” range.

The dashed-dotted line in Fig. 6 shows that the number of

approximation points decreases and approaches that of the

cold case. The minimal approximation width is thus depend-

ent on the “quality” of the potential profile. We took advant-

age of the convex function near the sheath edge and resolved

with the simple criterion a ¼ amax, which selects the deflec-

tion point. When ruling out the “minimal” width, any other

estimation criterion can be used to determine the sheath edge

singularity in the limit. As seen from the inset graphs, the

approximation width is still quite large.

Fig. 8 shows the increase of the grid density at a viewing

width w ¼ 0:0001 with more that 50 discretization points in

the selected range. Origin (0,0) in Fig. 8 is the sheath edge

ðxs;Us). Two distinct models are presented: the analytic so-

lution for “cold” Tn ¼ 0 T&L model and finite ion-source

temperature model with Tn ¼ 10. We can safely assume

(because we know the analytic solution) that alpha is exactly

1=2 for Tn ¼ 0. The analytic potential profile is discretized

to correspond to the discretization used in our program code

for finite ion-source temperatures.6,33 High resolution grad-

ing near the sheath edge is required for precise treatment in

the area of interest.

We can conclude that in the limit the power law holds

and that problems with the appropriate width when

approaching w! 0 are related to numerical uncertainty.

Thus, we can find safely the power alpha with proposed

approximation and perform even better if taking into account

aðwÞ variation.

IV. NUMERICAL RESULTS

Dependence of amax on Tn is shown in Fig. 9 in logarith-

mic scale. We used different grids to prove invariance of a
on the grid setup. For Tn � 0:05, the approximation came

within a couple of percent to the theoretical value of

a ¼ 2=3. Entirely new result is represented by the transition

region observed approximately for Tn � 0:05� 0:1, where

we observed a sharp drop of a to another theoretical limit

a0 ¼ 1=2. It should be noted that a potential profile for

Tn ¼ 0 is simulated from the analytic T&L solution and not

obtained from our code, and the results agree well with our

results obtained for very small temperatures. This observa-

tion, which is well demonstrated in Fig. 4, additionally sup-

ports the reliance of our numerical results. However, the

precision of potential profiles in this region of temperatures

FIG. 6. Convergence of a and a corresponding optimal number of approxi-

mation points n.

FIG. 7. Approximation of power a for Tn ¼ 1 with grid np ¼ 2401 points

and density k1 ¼ 1, k2 ¼ 2:4. The width of approximation shown in (a) with

the same number of points used in approximation n as in the grid scale (b).

The inset graphs show in detail the behavior for the evaluation of the a esti-

mation criterion.

FIG. 8. (Color online) Sheath edge detail for “cold” Tn ¼ 0 and “warm”

Tn ¼ 10 ion-source model.
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still could be improved via forcing additional iterations that

will even better stabilize a. Precise description of behavior

in the region of medium temperatures 0 < Tn � 0:1 also

requires a number of additional points, which is a very ex-

pensive task that we postpone to be performed in future if

deemed necessary for particular purposes, but at the moment,

the results presented here meet our needs. For the present

purpose, an estimation of linear dependence on a in the

region of medium temperatures 0 < Tn � 0:0555 in the form

a ¼ 3Tn þ 1
2
; Tn < 0:0555:::

2
3
; Tn > 0:0555:::

�
(44)

as illustrated in Fig. 9 seems to be nice and might be useful

even for quantitative purposes. Fig. 10 shows the dependence

on parameter CTn
on the ion source temperature. The reliabil-

ity of this result is confirmed by comparing the results

obtained from our fitting procedure for very small Tn with

theoretical values obtained for Tn ¼ 0. These results are the

only ones that are reliably known so that the validity of

results for CTn
for increasing temperature cannot be checked

by an independent method. Thus two very intriguing ques-

tions might arise regarding the shape of CTn
ðTnÞ curves,

namely, what is the physical reason why (1) these curves are

not monotonic and (2) why the maxima of these curves and

the knees of aðTnÞ curves are found for approximately the

same Tn (0:05� 0:1)? We must admit that we did not find a

satisfactory answer to this question. The only physical differ-

ence between strictly cold and approximately cold ion sour-

ces is that in the first case, the final ion “temperature”

originates from the energy spread due to ion acceleration

caused by plasma local potential drop, while in the second

case, random motion plays an important role and might dom-

inate over the directional motion. The dependence of final

ion temperature Ti on the ion source (neutrals) temperature

Tn is illustrated in Fig. 11. Such a dependence in a wider

range of temperatures Tn can be found in the work by Kos

et al.,6 where it is clearly seen that with a decreased ion

source temperature profiles, TiðUÞ monotonically decrease as

one approaches from the center towards the plasma bound-

ary. Non-monotonic behavior appears for very low but finite

ion temperatures. Any physical explanation of the transition

region in-between should be related to the qualitative behav-

ior of ion population being not direct but just an indirect con-

sequence of the ion-source temperature. Second, the

potential profile, especially near the plasma sheath boundary,

depends on both ion stochastic and directional motion, since

these motions are directly connected to the ion density distri-

bution and so to the potential profile. So the question is what

is a characteristic difference between “cold” and “warm” ion
motion near the sheath edge. Fig. 11 shows that with very

small neutral temperatures, the ion temperature near the

sheath edge does not necessary increase with increased neu-

tral temperature. This results from the competition between

the directional and random motions. The contribution of the

neutral random motion to the total ion temperature is always

dominant in the center of the plasma, while near the sheath

edge, it is more complex because a slight increase of the ran-

dom contribution is followed by a decrease of the sheath

potential drop. Consequently, with a slight increase of the

random ion, the motion ions acquire less energy at the sheath

entrance than in the cold neutral case. So, quite surprisingly,

the sum of random and directional energy near the sheath

FIG. 9. (Color online) Dependence of power a on the ion-source tempera-

ture Tn in logarithmic scale.

FIG. 10. (Color online) Dependence of the constant C on the ion-source

temperature Tn.

FIG. 11. Dependence of ion temperature Ti on the local potential for small

ion-source temperatures Tn.
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edge might be lower than in the cold ion-source case. This

behavior is clearly illustrated in our Fig. 11: while for

increased ion-source temperature, the total ion temperature

increases at any point (e.g., curves Tn ¼ 0:66, Tn ¼ 0:50,

and Tn ¼ 0:33 are one above other, respectively), without

any touching or intersecting each other, in cases Tn ¼ 0:33,

Tn ¼ 0:025 there is an “inverse” behavior in the vicinity of

the sheath edge and these curves intersect Tn ¼ 0 curve and

each other.

A possible separatrix of the described two behaviors

might be estimated as the “critical” ion source temperature,

but we will not perform this task even if this possible separa-

trix falls in the Tn ¼ 0:05� 0:1 region, because we are aware

that this will not prove anything. Anyway, we draw attention

to the “temperature inversion” effect as the only one that we

found to be strongly related to the ion-source temperature

increase from singular to regular ion-source cases.

V. DISCUSSION AND CONCLUSION

The problem of value in the power law for determining

the potential profile near the plasma singularity point is

solved for particular Maxwellian and water-bag velocity dis-

tributions via both the appropriate analytic approximation

method and numerical calculations. The results show that

with “cold” ion sources in both particular cases of velocity

distribution functions, the dependence xðUÞ is parabolic

(power 1=a ¼ 2), while in the case of “warm” ion sources, it

is fractional (power 1=a ¼ 3=2). Moreover, this holds inde-

pendently on the uniformity of the ion source strength. There

is a very narrow region between these two limiting cases

which we are unable to describe with the analytic method

and where the power law can be derived only via the numeri-

cal method. Finding a reliable empirical formula in the inter-

mediate region (between high and vanishing ion source

temperatures) is a task postponed for the future. For the pres-

ent purposes, we recommend adopting a linear dependence

an for 0 < Tn < 0:1Te. Our analytic and numerical procedure

for the first time estimates the previously unknown width of

the “gap” between high and small ion source temperatures

where none of fractional power is appropriate for approxi-

mating the potential profile. Second, in contrast with the pre-

vious assumption that the power law a ¼ 2=3 holds for

temperatures satisfying, e.g., Tn > Us (where UsðTnÞ is the

value of the potential at the singularity point xs), it turns out

that this power law holds with high reliability in a much

wider range of ion source temperatures, i.e., even for

Tn > 0:05� 0:1.

The old results from 1991 (Ref. 1) according to Rie-

mann may be considered as “more than being just an estima-

tion, but less than being proved.”34 That means that a

calculation of the power law for at least one particular ion

source velocity distribution has so far remained an opened

task to be solved. Our investigation is an explicit calculation

via using particular ion source velocity distribution func-

tions, i.e., Maxwellian and water-bag. So his general results

may be considered now as finally explicitly confirmed and

furthermore extended as valid to a much wider range of va-

lidity than supposed up till now.

We propose a crude empirical formula a ¼ 3Tn þ 1=2

describing the dependence a on Tn in the “gap” between the

two solutions obtained analytically and numerically for the

rational powers of a potential profile. Due to a very narrow

range of validity of this non-rational power dependence, it

turns out that estimating the validity of the power law for ex-

perimental plasmas should be a rather demanding task, since

it is difficult to know the ion source temperature with high

reliability. The neutral ion source temperature is for sure not

equal to the room temperature but it should be higher due to

many binary processes, e.g., charge exchange. It seems to be

much “safer” to predict the potential profile in really

“warm,” i.e., fusion-like plasmas, than in “ordinary” labora-

tory plasmas, where the ion-source temperature is low but

never zero and never equal to the room temperature. As is

the case, it turns out that the concept of high, medium, and

low ion temperature should be carefully used in future theo-

retical and engineering investigations before definitely

applying any power law to the boundary of a particular

plasma, but the present investigation provides a good basis

for a relevant decision on proper a. Finally, we conclude that

the present investigation is a new basis for any possible

future investigations on scaling laws in the intermediate

plasma sheath region.
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APPENDIX: THE DIVERGENCE PROBLEM

In order to simplify the estimation, we assure that

jUsj 	 1 and consider the integral

ðUs

0

dU0
d2x0

dU02
ln

bTn

jU0 � Uj ¼ I: (A1)

In the interval of integration, we pick out the point U0 ¼ U,

I ¼ I1 þ I2; (A2)
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I1 ¼
ðU�DU

0

dU0 þ
ðUs

UþDU
dU0

� �
d2x0

dU02
ln

bTn

jU0 � Uj ; (A3)

I2 ¼
ðUþDU

U�DU
dU0

d2x0

dU02
ln

bTn

jU0 � Uj : (A4)

Assuming that DU is small (DU > 0), we can [Eq. (A4)] rep-

resent in the form

I2 ’
d2x0

dU02

				
U0�U



ðUþDU

U�DU
dU0 ln

bTn

jU0 � Uj : (A5)

In Eq. (A5), we have used the fact that the function x ¼ xðUÞ
is monotonic in interval Us < U � 0. From Eq. (A5), we

find

I2 ’
d2x0

dU02

				
U0�U

2 DU ln bTn � DUðln DU� 1Þf g <1: (A6)

Hence, really the point U0 ¼ U does not lead to the diver-

gence of the integral in Eq. (35).

1K.-U. Riemann, J. Phys. D: Appl. Phys. 24, 493 (1991).
2R. C. Bissell and P. C. Johnson, Phys. Fluids 30, 779 (1987).
3J. T. Scheuer and G. A. Emmert, Phys. Fluids 31, 3645 (1988).
4K.-U. Riemann, in Proceedings of the 62nd Annual Gaseous Electronic
Conference, APS Meeting Abstracts (American Physical Society, Saratoga

Springs, New York, 2009), Vol. 54, p. 1001.
5K.-U. Riemann, in his e-mail to L. Kos and N. Jelić, 08/24/2009, Riemann
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