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The magnetized plasma-wall transition (MPWT) layer at the presence of the obliquity of the

magnetic field to the wall consists of three sub-layers: the Debye sheath (DS), the magnetic

pre-sheath (MPS), and the collisional pre-sheath (CPS) with characteristic lengths kD (electron

Debye length), qi (ion gyro-radius), and ‘ (the smallest relevant collision length), respectively.

Tokamak plasmas are usually assumed to have the ordering kD � qi � ‘, when the

above-mentioned sub-layers can be distinctly distinguished. In the limits of eDmðkD=qiÞ ! 0 and

emcðqi=‘Þ ! 0 (“asymptotic three-scale (A3S) limits”), these sub-layers are precisely defined.

Using the smallness of the tilting angle of the magnetic field to the wall, the ion distribution

functions are found for three sub-regions in the analytic form. The equations and characteristic

length-scales governing the transition (intermediate) regions between the neighboring sub-layers

(CPS – MPS and MPS – DS) are derived, allowing to avoid the singularities arising from the

eDm ! 0 and emc ! 0 approximations. The MPS entrance and the related kinetic form of the

Bohm–Chodura condition are successfully defined for the first time. At the DS entrance, the Bohm

condition maintains its usual form. The results encourage further study and understanding of

physics of the MPWT layers in the modern plasma facilities. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4900765]

I. INTRODUCTION

The situations where a magnetic field intersects the solid

wall at a small angle is rather common in plasma physics.

For instance at the divertor plate of the tokamak, where the

knowledge of the structure of the magnetized plasma-wall

transition (MPWT) layer is necessary to reduce the undesir-

able fluxes to the wall.1 At some surfaces of spacecrafts

moving in the earth magnetic field as well as in the labora-

tory gas discharge tube (where the magnetic field is used for

plasma isolation from the tube-walls), the grazing intersec-

tion angle inevitably occurs. For the tilting angle of the mag-

netic field lines below, we use the values a< 5� (or

a< 0.087), which are usually assumed when considering the

similar boundary layer problems in magnetized plasmas. The

fluid model is not suitable for describing the MPWT layer

because of the occurrence of strong inhomogeneities there.

But the point is that there is little information on the kinetics

of MPWT layer (especially in the analytic form) in systems

where the ions’ transport to the wall is strongly impeded by

the tilted magnetic field.2–4 In Ref. 4, where the kinetic prob-

lem is considered most consistently, only the so-called mag-

netic pre-sheath (MPS) (a sub-layer of the MPWT) is

discussed, assuming it to be collisional—the charge-

exchange collisions of ions with the neutrals are taken into

consideration. The ion gyro-radius qi is of order/less of the

relevant collision length ‘, and the width of the Debye sheath

(DS) is negligibly small, kD! 0. In Ref. 4, the ion distribu-

tion function, as a solution of the ion Boltzmann equation, is

constructed by means of the special method using the sum-

mation over the initial conditions in the collisions. The ion

density and the self-consistent electric potential further are

found numerically.

To our knowledge, the present paper is a first attempt to

embrace the whole MPWT layer considering its all sub-

layers in the analytic form. The smallness of the inclination

angle a allows to seek the ion distribution function in the

form of expansion and formulates the necessary boundary

conditions at the interfaces of the neighboring MPWT sub-

layers.

In the presence of an oblique magnetic field, the plasma-

wall transition (PWT) layer can be divided into three regions

(Fig. 1), namely: the DS, the MPS, and the collision pre-

sheath (CPS) with characteristic length scales kD, qi, and ‘,
(relevant collision length), respectively.1 For the limiting

FIG. 1. Structure of the MPWT.
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ordering kD� qi� ‘ (“asymptotic three-scale (A3S) limit”),

i.e., for eDm ¼ ðkD=qiÞ ! 0 and ecm ¼ ðqi=‘Þ ! 0, the DS

can be characterized as collisionless and non-neutral (ni 6¼ ne

with ni and ne the ion and electron number densities, respec-

tively), the MPS as quasi-neutral (ni¼ ne) and collisionless

(in contrast with the consideration of Ref. 4) and the CPS as

collisional and quasi-neutral.5 In the classical PWT problem

without magnetic field, the spatial monotonicity of the elec-

tric potential requires the fulfillment of the non-marginal

Bohm condition at the DS interface. Chodura5 was the first

to investigate the quasineutral MPS in the fluid approxima-

tion with an oblique magnetic field without any collision

effects, i.e., in the A3S limit.

The problems similar to ones presented in the paper at

hand were considered numerically in Refs. 6–9. In Ref. 6,

the gyro-conversion and the resulting deformation of the ion

distribution function at approaching the wall are considered.

The authors numerically investigate the collisionless mag-

netic pre- sheath and Debye sheath by applying the 4D ver-

sion of the Eulerian Vlasov code (with one space and three

velocity coordinates), which solves the Vlasov equation con-

sistently with Poissons equation for a 1D structure of the

electric field perpendicular to the wall. From the beginning,

the ion temperature is assumed to be equal or larger than

electron one. The velocity distribution function (VDF) for

ions is chosen in the form of the shifted Maxwellian with the

smoothing factor, which depends on the velocity along the

magnetic field. The shapes of the ion distribution function,

the electric potential, and the ion current densities are deter-

mined. In Ref. 7, also the Vlasov code is used to investigate

the possibility of the smooth transition between an absorbing

wall and a plasma in the presence of a titled magnetic field.

Only two sub-layers—the magnetic pre-sheath and the

Debye sheath are considered. The angle between the mag-

netic field and the wall is assumed not to be small. Electrons

are assumed to follow the Boltzmann distribution and the ion

kinetics is described by means of the Batnagar–Gross–Krook

equation. It is found that the shape of the ion velocity func-

tion near the wall is far from the Maxwellian, though at

the magnetic pre-sheath entrance was assumed to bi-

Maxwellian. The theoretical expression for the spatial exten-

sion of the pre-sheath it appears to be consistent with the

simulations of Ref. 7. In Refs. 8 and 9, the structure of the

system (the magnetic pre-sheath þ the Debye sheath) differ-

ent from papers in Refs. 6 and 7 is investigated by means of

non-stationary (time-dependent) kinetic equations for elec-

trons and ions. The electrons are described by the kinetic

equation parallel to the magnetic field and the ion VDF is

characterized by three components of the velocity. At the

pre-sheath entrance, both electron and ion VDFs are chosen

as Maxwellian (for the ion VDF also the smoothing factor is

used6). The time dependence allowed the authors to give spa-

tial distributions in the sheath for all parameters (densities,

the electric potential, the electric field, and currents) for dif-

ferent fixed time-moments. It is found that the electrons run-

ning along the magnetic field lines attempt to catch the

gyrating ions. Below the critical angle of the magnetic field

incidence, such electron-ion interaction can lead to the

appearing of the low frequency oscillations. For angle larger

than the critical one, however the usual classical results are

recovered. In all papers,6–9 the collisional sheath located

beyond the magnetic pre-sheath is not considered.

The DS and MPS regions are separated by the

“presheath edge,” or “sheath entrance (SE),” which in the

A3S limit is characterized by the “marginal Bohm criterion,”

uz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðTe þ cTiÞ

p
, where uz is the z-component of the ion

fluid velocity, k is the Boltzmann constant, c is the local ion

polytropic coefficient, Te is the electron temperature, and Ti

is the ion temperature.10 In this limit, the presheath edge

appears as a field singularity if viewed on the MPS scale,

and as lying in infinity if viewed on the DS scale. The pres-

ent paper shows that (i) the MPS and the CPS are separated
by a similar (so far unknown) boundary surface, called the
“MPS entrance (MPSE);” (ii) quite in analogy with the
DSE, the MPSE can be defined in the A3S limit as a surface
were the electric field has a singularity if viewed on the CPS
scale and lies in infinity if viewed on the MPS scale; (iii) the
kinetic form of the “Bohm–Chodura condition” at the MPS
entrance is for the first time formulated as a quite logical
consequence of the above mentioned conditions; (iv) we ana-
lyze the MPS – CPS and DS – MPS transition (intermediate)
regions in the A3S limit. The equations bridging these
regions and their characteristic lengths are determined.

According to the Bohm–Chodura condition, the ion flow

velocity at the MPS entrance should be aligned along the

magnetic field lines. Therefore, the dominant effect of the

MPS is to deflect the ion orbits in such a way that the veloc-

ity component, perpendicular to the wall, at the DS entrance

(DSE) can fulfill the Bohm condition.1,11 In the absence of a

magnetic field or in the presence of a magnetic field perpen-

dicular to the wall, the MPS does not exist as a distinct

region at all.

II. MODEL AND BASIC EQUATIONS

The problem considered is one-dimensional, with the z

axis perpendicular to the wall surface. The latter is placed at

z¼ 0 and the plasma occupies the region z< 0. We assume a

uniform magnetic field lying in the xz–plane and making a

small angle a with the wall (see Fig. 2). The wall has a nega-

tive potential and all particles impinging on it are absorbed.

The plasma is weakly ionized and composed of singly

charged ions, electrons, and a cold neutral gas background,

FIG. 2. MPWT geometry.
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distributed uniformly. The thermal motion of ions is also

neglected, Ti! 0, whereas the electrons are the Boltzmann-

distributed

ne ¼ n0 exp ½eUðzÞ=ðkTeÞ� ; (1)

where U(z) is the electric potential.

The density distribution (1), which is most often used,

may be incorrect especially near walls, where absorption of

fast electrons tends to decrease the electron density, in com-

parison with (1). Some aspects of the validity of the

Boltzmann relation (1) for electrons in the magnetized

plasma is discussed in Ref. 12, although the conditions found

in Ref. 12 hardly can be applied to our one-dimensional

case. Our choice of the form (1) can be justified because the

electrons, having high mobility and moving along the mag-

netic field lines, can achieve Boltzmann-like distribution due

to collision processes (See Sec. III B below) and the reflec-

tion of electrons by the negative potential barrier at the

wall.2 The ions are assumed to be produced by the electron-

neutral impact ionization accounted for by the source term

proportional to the ionization frequency �i, and governed

also by the charge-exchange collisions with the neutrals. For

the ions’ distribution function fi(z, v), we have the kinetic

equation

vz
@fi

@z
� e

mi

@U
@z

@fi

@vz
þ v� Bð Þ @fi

@v

¼ d vð Þ
ð

dvn�cx jvnjð Þfi z; vð Þ � �cx jvjð Þfi þ �id vð Þ � ne zð Þ ;

(2)

where U is the electric potential, B ¼ fB cos a; 0;B sin ag is

the magnetic field (Fig. 2); first two terms in the right-hand-

side describe the charge-exchange collisions of ions with the

cold neutrals with the frequency �cxðjvjÞ ¼ jv=kcx. The gas

of neutrals is homogeneous in space (their number density

nn¼ const) and follow the distribution function fn¼ nnd(v).

The contribution of the Dirac d–function just from the latter

expression is occurring in Eq. (2). In the MPWT theory, the

model of the constant charge-exchange length, kcx¼ const, is

considered as a good approximation.13

Further we use the dimensionless quantities

�eU=ðkTeÞ ¼ u ; qi ¼ cs=xc ; c3
s fi=n0 ¼ f ;

ni=n0 ¼ ki ; cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTe=mi

p
; xc ¼ eB=mi :

(3)

For convenience, the normalized phase-space velocity and

the normalized electron density we denote with the same

symbols as the non-normalized ones

v=cs ) v ; ne=n0 ) ne ¼ e�u : (4)

Introducing the unit vector s along the magnetic field direc-

tion, we obtain B ¼ Bs. In Eqs. (3), qi represents a character-

istic gyro-radius of ions. In these quantities, the system of

equations used below acquire the form

vz
@fi
@z
þ @u
@z

@fi
@vz
þ 1

qi

v� sð Þ @fi

@v
¼ 1

kcx
d vð ÞC zð Þ � jvjfi

� �
(5)

with

C zð Þ ¼
ð

dvjvjfi z; vð Þ þ
kcx

ki
e�u ; (6)

n ¼
ð

dvfiðz; vÞ ; (7)

j ¼
ð

dvvfiðz; vÞ ; (8)

k2
D

@2u
@z2
¼ b� e�u ; kD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2= kTeð Þ

p
: (9)

Here, kcx represents the ion mean free path at their charge-

exchange collisions with neutrals. Its connection with the

characteristic scale-length ‘ of the CPS will be discussed

below. Equations (6)–(9) represent the system of partial

integro-differential equations. Using the inequalities kD �
qi � ‘ and splitting the MPWT layer into three—CPS, the

MPS, and DS sub-layers, we have succeeded to describe

analytically the shape of the electric potential for these sub-

layers separately and then connect the profiles of the poten-

tials of the neighbour sub-layers in the continuous manner.

III. REGION OF THE CPS SUB-LAYER

In this section, we will give the explanation on the Ion
distribution function, the Electron distribution function, and

the Bohm–Chodura criterion.

A. Ion distribution function

The CPS can be completely separated and investigated

independently from other sub-layers under the condition (q/

‘) ! 0. In order to find the ion distribution function in this

limit, we can apply the method usually used in simplifying

the kinetic equation for describing the motion of the guiding

centres.14 As in Ref. 14, we write Eq. (5) in a cylindrical

coordinate system in velocity space with the axis along the

magnetic field

vz
@fi

@z
þ 1

v?

@

@v?
v?a?fi þ

@

@vk
akfi þ

1

v?

@

@h
ahfi

¼ 1

kcx
d vð ÞC zð Þ � jvjfi
� �

: (10)

Here, vk and v? are the velocity components parallel and per-

pendicular to the magnetic field, respectively. In these quan-

tities, the characteristic equations are

dz

dt
¼ vz ; (11)

a ¼ dv

dt
¼ _v ¼ vz �

@

@z

� �
v ¼ ruþ 1

qi

v� sð Þ : (12)

The velocity we can represent in the form

v ¼ vksþ vD þ v?ðs1 sin hþ s2 cos hÞ : (13)

The vectors s1 and s2 are unit vectors that form a right-

handed orthogonal triad with s. In Fig. 3, the definite
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directions of this triad are given, though the direction of

these vectors are not important for the results in this section

since they do not appear in the final result. The quantity vD

is the electric drift velocity of charged particles in crossed

electric and magnetic fields

vD ¼ qiðru� sÞ : (14)

Here and below r � f0; 0; @=@zg. In the analysis of the par-

ticle motion in the crossing electric and magnetic fields,14,15

the velocity vD is conventionally separated out in accordance

with Eq. (13). Substituting Eq. (13) into Eq. (12), we find

_vksþ _vD þ _v?fs1 sin hþ s2 cos hg
þv? _hfs1 cos h� s2 sin hg

¼ s ru � sð Þ þ 1

qi

v? s1 cos h� s2 sin hf g : (15)

Taking projections in the directions s1, fs1 sin hþ s2 cos hg,
and fs1 cos hþ s2 sin hg, we find

ak ¼ _vk ¼ ðs � ruÞ ; (16)

a? ¼ _v? ¼ �fðv?s � rÞðs1 � vDÞ � sin h

þðvks � rÞðs2 � vDÞ � cos hg
¼ A1 sin hþ B1 cos h ; (17)

ah¼ v? �h¼
1

qi

v?þ
v?
2

s �curlvDð ÞþA2 sinhþB2 cosh : (18)

In Eqs. (16)–(18), we have omitted the terms proportional to

sin2h and cos2h, and the relation ðs � vDÞ ¼ 0 taken into

account. The coefficients A1, B1, A2, B2 do not contain the

angle h and their explicit forms are not important in the fol-

lowing analysis. Substituting ak and a? into Eq. (10), the lat-

ter can be reduced to the form

vksz þ vDzð Þ
@

@z
þ @

@vk
ru � sð Þ þ 1

qi

@

@h

(

þ 1

2
s � curlvDð Þ @

@h
þ A sin hþ B cos h

�
fi

¼ 1

kcx
d v? sin hþ vDð Þd v? cos hð Þd vkð ÞC zð Þ
n

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
? þ v2

D þ v2
k þ 2v?vD sin h

q
fi

o
; (19)

where the coefficients A and B are again independent from

the angle h. If ðqi=‘Þ � 1, the solution of Eq. (19) we can

seek in the form of expansion in powers of (qi/‘):

fi ¼ f0 þ
qi

‘
f1 þ � � � : (20)

In the zero approximation,

@f0
@h
¼ 0 ; (21)

i.e., f0 ¼ f0ðz; vk; v?Þ; Here, it should be mentioned that

vD	 qi/‘. The function f1 one can find from the equation

vkszþ vDzð Þ
@

@z
þ @

@vk
ru � sð ÞþA sinhþBcosh

( )
f0

¼ @f1
@h
þ 1

kcx

n
d v? sinhð Þd v? coshð ÞdðvkÞC zð Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
? þ v2

k

q
f0

o
: (22)

From physical consideration, we assume f1 to be a periodic

function of the angle h. Obviously in our case, vDz¼ 0 and

sz¼ sina. Consequently, the characteristic scale length ‘
should be chosen in the form ‘¼ kcxsina, showing that the

scale-length along the z-axis differs from the kcx. Introducing

the normalized coordinate x¼ (z/‘) and integrating Eq. (22)

over h from 0 to 2p, we obtain an equation for ions in the

CPS

vk
@f0

@x
þ @u
@x

@f0

@vk
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
? þ v2

k

q
f0 ¼

d v?ð Þd vkð ÞC xð Þ
2pv?

: (23)

In obtaining Eq. (23), the relation vk 
 vD is taken into

account. Obviously, due to the presence of the absorbing

wall, the ions can move only in the positive direction

towards the wall along the magnetic field line. The solution

of Eq. (23) we will seek in the form

f0 ¼
1

2pv?
d v?ð Þf x; vkð Þ; vk � 0;

0; vk < 0 :

8><
>: (24)

For f ðx; vkÞ, then we obtain the equation

vk
@f

@x
þ @u
@x

@f

@vk
¼ d vkð ÞC xð Þ ; (25)

with

C xð Þ ¼
ð1

0

vkf x; vkð Þdvk þ
kcx

ki
e�u : (26)

The solution of Eq. (25) with the boundary condition, f ¼
dðvkÞ at u ¼ 0, is

f ðu; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jy� uj

p
� dðu� yÞ � exp f�½xðuÞ � xð0Þ�g

þCðu� yÞx0ðu� yÞ � exp f�½xðuÞ � xðu� yÞ�g
� Hðu� yÞHðyÞ; (27)

FIG. 3. Directions of the triad ðs; s1; s2Þ.
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where x0 � dxðuÞ=du; y ¼ v2
k=2, and H(y) is the Heaviside

step function. By means of (7) and (27) for the expression of

the ion density and the flux along the magnetic field-lines,

we find

n uð Þ ¼
ð1

0

dyffiffiffi
y
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy�uj

p
d y�uð Þexp x uð Þ� x 0ð Þ

h i

þ 1ffiffiffi
2
p
ðu

0

du0ffiffiffiffiffiffiffiffiffiffiffiffiffi
u�u0
p C u0ð Þx0 u0ð Þexp x u0ð Þ� x /ð Þ

� �
; (28)

jkðuÞ ¼
ðu

0

du0Cðu0Þx0ðu0Þ exp½xðu0Þ � xð/Þ� ; (29)

and for the coefficient C(x) from (26), we obtain

C uð Þ ¼ jk uð Þ þ
kcx

ki
e�u : (30)

In obtaining Eqs. (27) and (28), the monotonic dependence

of the potential on the coordinate is also used, which means

the one-to-one correspondence of the function u ¼ uðxÞ to

its argument. From Eq. (30), we find

@jk
@u
¼ C uð Þ � jk uð Þ
� �

x0 uð Þ

or jk uð Þ ¼
kcx

ki

ðu

0

du0e�u0x0 u0ð Þ (31)

that allows to represent the coefficient CðuÞ in the form,

more convenient for further consideration

C uð Þ ¼
kcx

ki

ðu

0

du0e�u0x0 u0ð Þ þ e�u

� �
: (32)

For the distribution function with u 6¼ 0 from (24) and (27),

we find

f0 v?; y;uð Þ ¼
1

2pv?
d v?ð ÞC u� yð Þx0 u� yð Þ

� exp � x uð Þ � x u� yð Þ
� �	 


H u� yð ÞH yð Þ:
(33)

B. Electron distribution function

In considering the electron kinetics, one has to take into

account in principle the electron–electron, the electron–ion,

and the electron–neutral particles collisions. In our case of

the PWT layer with the prevailing density of neutrals, the

main contribution is given by electron–neutral collisions. For

not too high electron temperatures, the frequency of the

inelastic electron–neutral collision is smaller in comparison

with the elastic one and the influence of this type of colli-

sions on the electron kinetics can be neglected. In order to

find the electron distribution function, the kinetic equation of

type (2) can be used with the electron–neutral elastic colli-

sion term on the right-hand side. This term can be repre-

sented in the form found by Kramers.16

One can further repeat word for word the whole proce-

dure realized in Sec. III A for the ion distribution function.

Using smallness of the parameter ðqe=‘enÞ � 1 (qe is the

electron gyro-radius and ‘en in the electron–neutral collations

mean-free path) the electron distribution function we can

represent in the form of the expansion (20) and reduce the

corresponding kinetic equation to the form analogous to Eq.

(25). As a solution of the latter for the electron distribution,

we find

fe ¼ const � exp � 1

Te

mev2
jj

2
þ eU xð Þ

 !" #
; (34)

which leads to the expression (1) for the electron density.

These results can be easily generalized for the case

when together with electron–neutral collisions the electro-

n–electron and the electron–ion collisions are also taken into

account. The corresponding collision terms can be repre-

sented in the forms given in Ref. 17. It should be mentioned

that the expression (34) for the electron distribution (and

consequently the expression (1) for the electron density) is

valid also for the MPS.

Due to the smallness of the Debye length (kD � ‘en) in

the DS, the collisions processes with the electrons participa-

tion can be neglected. The corresponding electron kinetic

equation then becomes homogeneous (the right-hand side is

equal to zero) and its solution, i.e., the electron distribution

function, represents an arbitrary function of the total energy

fe ¼ feðmev2=2þ eUÞ. From the boundary functions in the

MPST–DS interface, it follows that this arbitrary function

(i.e., the electron VDF) and the electron density can be

expressed in forms (34) and (1), respectively.

C. Potential profile

Using the normalized coordinate x defined above, on the

left-hand-side of the Poisson Eq. (9) appears a coefficient

(kD/‘)2 and applying our assumption for the CPS, (kD/‘) !
0, Eq. (9) will be reduced to the condition of the

quasineutrality,

n ¼ e�u : (35)

In terms of Eq. (28), this condition acquires the form of an

equation for the electric potential u:

exp½�uþ xðuÞ� ¼
ð1

0

dyffiffiffi
y
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy� uj

p
dðy� uÞexp½xð0Þ�

þ 1ffiffiffi
2
p
ðu

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� u0
p Cðu0Þx0ðu0Þexp½xðu0Þ�:

(36)

With the integral equation of the form

ðu

0

du0S u0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� u0
p ¼ g uð Þ; (37)

we can manipulate as follows: from Eq. (37), we can write

ðu

0

du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� u0
p

ðu0

0

du00W u00ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0 � u00
p ¼

ðu

0

du0g u0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� u0
p ; (38)
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changing the ordering of integrations by means of equalityðu

u00

du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� u0ð Þ u0 � u00ð Þ

p ¼ p; (39)

we find

w uð Þ ¼
1

p
d

du

ðu

0

du0g u0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� u0
p : (40)

Applying this manipulation to Eq. (36), we obtainðu

0

du0 exp �uþ x uð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� u0
p

¼ pffiffiffi
2
p
ðu

0

u00C u00ð Þ d

du00
exp x u00ð Þ½ � : (41)

Using the relation (32), we represent the equation for finding

the inverse to u ¼ uðxÞ function x ¼ xðuÞ in the form

A � e�ux0 uð Þ ¼
@

@u
e�x uð Þ

ðu
0

du0 exp �u0 þ x u0ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� u0
p ; (42)

where A ¼ pffiffi
2
p kcx

ki
. For u� 1 from Eq. (42), we find

x uð Þ ¼ x 0ð Þ þ 2

A

ffiffiffiffi
u
p

1� 2

A

ffiffiffiffi
u
p

1� p
4

� �� �
: (43)

From Eq. (42), it is obvious that at the point, x¼ xm, where

@

@u

ðu

0

du0 exp �u0 þ x u0ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� u0
p ¼ 0 ; (44)

the value dx=du equals zero, which means that the electric

field ðE / du=dxÞ has a singularity, E(x) !1 at x ! xm.

We define this point as the MPS entrance (MPSE) or as the

edge of the CPS. This newly defined MPSE is quite analo-

gous to the definition of the DS entrance in the unmagnetized

PWT layer.11 The potential profile resulting from Eq. (40) is

shown in Fig. 4. The curve starts with zero field and really

ends with a field singularity, x0ðuÞ ¼ 0, at the MPS edge

(u ¼ um, x¼ xm). The numerical calculations give for

xm¼ 0.5 and for uðxmÞ ¼ um. The parameter A¼ 1.6 that

means kck	 0.72ki. Close to the singular point, a parabolic

dependence takes place

x ¼ xm � aðum � uÞ2; (45)

where a ’ 0.22. The relation (45) is valid in rather large

interval 0.75�u� 1.25.

D. Bohm–Chodura criterion

According to Eq. (28), the expression for the ion density

for u 6¼ 0 we can represent in the form

n uð Þ ¼
ðu

0

dyffiffiffi
y
p ~f u� yð Þexp �x uð Þ½ �; (46)

where

~f u� yð Þ ¼
1ffiffiffi
2
p C u� yð Þx0 u� yð Þexp x u� yð Þ½ �: (47)

Considering the density as a moment of the “zero order,”

nðuÞ ¼ M0ðuÞ; for “nth order moment,” we find

MnðuÞ ¼
ðu

0

du0ðu� u0Þn�1=2 ~f ðu0Þ exp½�xðuÞ�: (48)

From Eq. (47) at n 6¼ 1/2, it follows the recurrence relation

d

du
Mn uð Þ ¼ n� 1

2

� �ðu
0

du0 u� u0ð Þn�1�1=2

� ~f u0ð Þexp �x uð Þ½ � � x0 uð ÞMn uð Þ : (49)

At the MPS edge, nðumÞ ¼ expðumÞ and consequently

M0ðumÞ ¼ expðumÞ. Then according to Eq. (49) and the con-

dition x0ðumÞ ¼ 0,

M�1ðumÞ ¼ 2 expðumÞ ; (50)

and finally we find

1

n umð Þ

ðum

0

dy

y2=3
~f um � yð Þexp �x umð Þ½ � ¼ 2 : (51)

It means that the kinetic Bohm–Chodura criterion is ful-

filled in the marginal form.18 In the integral (48), do

not arise mathematical difficulties due to divergence at

the point y¼ 0 in the denominator of the integrand, as

at this point the distribution function vanishes [see

Eq. (47)].

IV. REGION OF THE MPS

As it is mentioned above, the MPS region is assumed to

be collisionless, as its characteristic scale-length is much

smaller than the characteristic mean-free-path, qi � kcx. The

neglecting of the right-hand side in Eq. (5) becomes obvious

if we introduce the new coordinate variable g¼ z /qi. To sim-

plify the use of the boundary condition at u ¼ um and
FIG. 4. The quasineutral potential profile u ¼ uðxÞ in the CPS. The parame-

ter A¼ 1.6. The MPSE is indicated by the vertical line x¼ xm, u � um.
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matching of the solutions, it is convenient to turn the coordi-

nate system on angle a choosing the polar axis along the

magnetic field direction [~f ðumÞ ¼ 0, see Fig. 3]. For the ve-

locity components in the new system, we find

ux ¼ vx cos aþ vy sin a ;

uy ¼ vy ;

uz ¼ �vx sin aþ vz cos a :

(52)

By means of relations (52) at the small inclination angle

að� 1Þ, Eq. (5) acquires the form

uz
@f i

@g
þ uz

@f i

@uy
þ @u

@g
� uy

� �
@f i

@uz

¼ �a ux
@f i

@g
þ @u
@g

@f i

@ux

( )
: (53)

The solution of Eq. (53) will be sought in the form

f i ¼ f 0 þ a f 1 : (54)

Then from (53), we have

uz
@f 0

@g
þ uz

@f 0

@uy
þ @u

@g
� uy

� �
@f 0

@uz
¼ 0 ; (55)

uz
@f 1

@g
þ uz

@f 1

@uy
þ @u

@g
� uy

� �
@f 1

@uz

¼ � ux
@f 0

@g
þ @u
@g

@f 0

@ux

( )
: (56)

The integration of Eq. (55) along the characteristics gives

f 0 ¼ f 0fux; uy � g; u2
z þ u2

y � 2uðgÞ � ðuy � gÞ2g: (57)

The solution of Eq. (56) also depends on uz, therefore we

have to distinguish the solutions with positive ðuz > 0Þf þ1
and negative ðuz < 0Þf �1 velocities.

We expect (and following calculations confirm) that

(i) the width of the MPS sub-layer is of the order of qi;

This is quite commonly accepted assumption.4,5,19,20

Below we show that in fact moving towards the MPS

edge, the ions cover the distance � qi.

(ii) Under our conditions, kS � qi � kcx the edge of the

MPS sub-layer (or the DS’s entrance), we define as

a point, where the electric field, directed towards

the wall, runs into singularity, Ez ! 1, [See Refs.

11 and 20];

(iii) The ions under action of the electric field cannot out-

line the full Larmor-circle and at the DS entrance the

ion velocities are directed along the z-axis. So in the

MPS sub-layer ions, described by f
þ
1 , move in the

z-axis positive direction and f
�
0 ¼ 0.

(iv) At the DS entrance, the Bohm criterion should be

fulfilled.1,11,20

(v) Close to the MPS edge ions move along the z-axis

and there In order to satisfy the Lenz law for the posi-

tively charged particles, rotating around the magnetic

field line, in our right-handed coordinate system

(see Fig. 3), the interval of the possible values for

uy should be chosen as follows: �1 � � 0. [See

Ref. 21].

All abovementioned items are in accordance with the

ion trajectories’ analysis given in Ref. 19. Below we will

show that under the conditions (i)–(v), the electric potential

us at the MPS edge point, satisfies the relation

us > ðxcqi=csÞ2 ’ 1 ; (58)

[see Eq. (72) and Table I].

In Ref. 19, the trajectories of ions in a MPS with a

strongly tilted magnetic field are analyzed and found that if

the ion gas is cold, Te>Ti at the fulfillment of the condition

(58), in all probability they enter the DS sub-layer with con-

siderable normal to the wall velocities (uy¼ 0) and without

oscillations along the z-axis (see discussions on the “type 2”

trajectories in Sec. II D of Ref. 19 [on the ion distribution

function with negative velocity, uz< 0, at the cold ion source

(neutrals) [see also Appendix].

Introducing the new variable y ¼ u2
z=2, Eq. (56) can be

represented in the form

uz
@f
þ
1

@g
þ uz

@f
þ
1

@uy
þ @u

@g
� uy

� �
@f
þ
1

@y

¼ � 1ffiffiffiffiffi
2y
p ux

@f 0

@g
þ @u
@g

@f 0

@ux

( )
H yð Þ : (59)

Further, we integrate Eq. (59) along the characteristics and

apply the boundary condition at the MPS entrance, defined

by u ¼ um,

f ijum
¼ ff 0 þ af

þ
1 gum

¼ f 0jum
; (60)

where the function f 0jum
in the right-hand side is defined

by the expression (33) at u� um. In the variables (ux, uy,

uz) from (52), this expression can be represented in the

form

f 0jum
¼ 1

p
d u2

z þ u2
y

� �
S ux;umð Þ ; (61)

S ux;umð Þ ¼
ðum

0

x0 uð ÞC uð Þexp �xm þ x uð Þ½ �

� d um �
1

2
u2

x � u


 �
du ; (62)

where CðuÞ is defined by Eq. (32). By means of Eqs. (53),

(56), (61), (62) and boundary condition (60), we find the ion

distribution function in the MPS sub-region

TABLE I. Coefficient A, potential um at the CPS edge and parameter IðumÞ.

A 0.16 0.4 1 1.6 2 2.2 3.4 4

um 1.41 1.21 1.05 1 0.97 0.96 0.94 0.92

IðumÞ 0.302 0.365 0.417 0.438 0.446 0.449 0.458 0.464
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f i¼
1

p
d u2

z þu2
y�2 u�umð Þ

h i
S ux;umð Þ�a

�
ðu
um

H u2
z þu2

y�2 u0 �umð Þ� uy� g uð Þ�g u0ð Þ
� �� �2

n o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

z þu2
y�2 u0 �umð Þ� uy� g uð Þ�g u0ð Þ

� �� �2
q

�du0 uxS ux;umð Þ
@

@u
þ
@S ux;umð Þ

@Ux

� �

�1

p
d u2

z þu2
y�2 u�umð Þ

h i
H uzþe1ð ÞH �uyþe2ð Þ: (63)

In Eq. (63), the infinitesimal values, e1 ! þ0 and e2 ! þ0,

are introduced in order to satisfy Eq. (59) when uz and uy

change in the intervals 0� uz<1 and �1< uy� 0.

A. Potential profile

By means of Eq. (63), we can calculate the ion density

by integration over velocities u. The MPS sub-layer is quasi-

neutral and using Eq. (35) we can construct an equation for

the electric potential u 6¼ 0, as it was made in Sec. III. In

this section and below the coordinates, obtained under the

quasineutrality condition,

e�u ¼
ð

du � f iðu; u; gÞ ; (64)

we will mark with bar-sign. According to the relation (36),

the integration of the first term in the right-hand side of Eq.

(63) over the velocities gives expð�umÞ. Substituting the

expression for the ion density into Eq. (35) and keeping in

mind the smallness of a (that leads to the smallness of the

difference u� u0), we find

B 2 u� umð Þ
	 
3=2 ¼ F Að Þ ;

B ¼
p exp �umð Þ

aI umð Þ
; (65)

F Að Þ ¼
ð1
A

dtffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p 1� t t� Að Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� t� Að Þ2
q ; (66)

A ¼
g uð Þ � g umð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 u� umð Þ
p ; (67)

where A changes in the interval As � A � 1, (u � um). In

obtaining of Eq. (65) the relations

ð1
0

dux

@S ux;umð Þ
@ux

¼ 0 and (68)

I umð Þ ¼
ð1
0

uxS ux;umð Þdux ¼
kcx

ki

ðum

0

e�u0x0 u0ð Þdu0 ; (69)

are used. The validity of the second equality in Eq. (68) can

be proved by the relationðum

0

x0 u0ð ÞC u0ð Þexp �xm þ x u0ð Þ½ �du0 ¼ kcx

ki

ðum

0

e�u0x0 u0ð Þdu0;

(70)

which follows from the comparison of Eqs. (41) and (42).

The function FðAÞ decreases, when A grows, FðAÞ ! 0 and

@FðAÞ=@A ! �1 at A ! 1 (see Fig. 5). Taking derivative

of Eq. (64) with u, we find that ð@z=@uÞ ¼ 0 at the point As,

where the following equality is fulfilled

3F As

� �
¼ �As

@F Að Þ
@A

����
As

: (71)

Numerical calculations using the curve of Fig. 5 gives

As ¼ 0:873854 and FðAsÞ ¼ 0:468221. The potential pro-

file in the MPS is given in Fig. 6. The point z¼ zs or

u ¼ us, where the electric field runs into singularity, we

can considered as the MPS’s edge or as the DS’s entrance.

The values of As and FðAsÞ allow us to find from Eqs. (65)

and (67)

us � um ¼
1

2

a
p

eum I umð ÞF As

� �� �2=3

; (72)

and gs � gm ¼ As
a
p

eum I umð ÞF As

� �� �1=3

: (73)

FIG. 6. Potential profiles in the MPS for a¼ 3� and a¼ 5�.

FIG. 5. Profile of the function FðAÞ. Solid line is the MPS region of interest,

where As � A � 1.
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1. Potential profile close to the MPS edge

Expanding the right-hand side of the relation (65) in the

series near the point As, we obtain

B 2 u�umð Þ
� �3=2 ¼ F As

� �
þ A�As

� �@F Að Þ
@A

����
As

þ �� � : (74)

Using Eqs. (67) and (71)–(73), we find

g ¼ gs � bðu� usÞ2 ; (75)

b ¼ 2As
a
p

eum I umð ÞF As

� �� ��2=3

: (76)

Equation (75) correctly describes the electric field singularity

at z ¼ zs.

2. Potential profile at the MPS entrance from the MPS
side

Expanding the auxiliary function FðAÞ from (65) in se-

ries of powers ð1� AÞ in the first un-vanishing approxima-

tion, we find FðAÞ ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A

2
p

. By means of (67), we

obtain

u� um ¼
1

2
g uð Þ � g umð Þ
� �2 þ O u� umð Þ4

h i
: (77)

Hence, at zðuÞ ! zðumÞ, the electric field vanishes.

B. Matching of potential profiles in the CPS and the
MPS regions

Comparison of expressions (45) and (77) shows that for

connection of the potential shapes from both sides of the

MPS and the CPS interface, we can as usually11,20 introduce

a characteristic scale-length lm and the renormalized

variables

zðuÞ � zðumÞ ¼ lmf ; u� um ¼ bW : (78)

Obviously, the equation for the potential in the intermediate

region, which bridges the CPS and the MPS subregions,

must consistently describe both representations. By means of

new variables from Eq. (78), this intermediate equation can

read

2
q2

i

l2m
bW3 ¼ f2 W2 þ lm

alb2
f

� �
: (79)

Really if lm¼ ‘ the left-hand side of Eq. (79) is negligibly

small and we obtain ab2W2
CPS ¼ �f, which corresponds to

the potential shape (45); and if lm¼ qi, then we obtain the

potential shape (77) in the form 2bWMPS¼ f2. Choosing

lm ¼ qi

4

a

qi

‘

� �1=3

and b ¼ 1

2

4

a

qi

‘

� �2=3

(80)

for the potential dependence in the vicinity of the CPS edge,

we obtain

W3 ¼ f2ðW2 þ fÞ : (81)

The curve in Fig. 7 describes this dependence. The length lm
can be considered as a characteristic intermediate scale.

C. Bohm condition

Intending to connect later on the distribution functions

in the MPS and the DS, it is convenient to represent the dis-

tribution function (63) in terms of the velocity components

[vx, vy, vz; see Eqs. (52)]:

f i u; vx; vy; vzð Þ
¼ f 0m þ f 1m

¼ 1

p
d v2

z þ v2
y � 2 u�umð Þ

h i
S vx;umð Þ �

a
p

ðu
um

@g u0ð Þ
@u0

�
H v2

z þ v2
y � 2 u0 � umð Þ � vy � g uð Þ � g u0ð Þ

� �� �2
n o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

z þ v2
y � 2 u0 �umð Þ � vy � g uð Þ � g u0ð Þ

� �� �2
q

� vy � g uð Þ � g u0ð Þ
� �	 


du0

� vxS vx;umð Þ
@

@u
þ
@S ux;umð Þ

@vx

� �

� d v2
z þ v2

y � 2 u�umð Þ
h i

H vz þ e1ð ÞH �vy þ e2ð Þ : (82)

Then for ion density and the presheath approximation (64),

we have, respectively,

nðuÞ ¼
ð

dv � f iðu; vx; vy; vz; gÞ ; (83)

e�u ¼
ð

dv � f iðu; vx; vy; vz; gÞ : (84)

In fact Eq. (82) is the solution of Eq. (53) written in terms of

velocity components vx, vy, vz, and quite identical to the

solution (63) with the accuracy of the first order of the

coefficient a. Keeping in mind the one-to-one mutual de-

pendence between u and z, we can represent this equation in

the form

FIG. 7. The potential shape (solid line) in the CPS–MPS intermediate region

with the CPS entrance WCPS ¼ �
ffiffiffiffiffiffi
�f
p

(dashed line) and the MPS entrance

WMPS ¼ f2 (dashed-dotted line).
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@f i

@u
þ 1

vz

@f i

@vz

¼ 1

vz

@z uð Þ
@u

1

qi

vy
@f i

@vz
� a

@f i

@vy

 !
� vz � avxð Þ

@f i

@vy

( )
: (85)

Considering this relation at the MPS edge, where

ð@zðuÞ=@uÞ ¼ 0, after integration over velocities, we find

@nð Þu
@u

����
us

¼�
ð1

0

dvx

ð0

�1
dvy

ð1
0

dvz

� 1

vz

@

@vz
f 1m us; vx; vy; vzð Þ : (86)

In obtaining Eq. (86), we have taken into account that the

function f 0m from Eq. (82) does not give the contribution in

the right-hand side of Eq. (86). For the ion density at the

MPS edge, we have

nðusÞ ¼
ð

dvff 0m þ f 1mg ¼ e�um �
ð1

0

dvx

ð0

�1
dvy

�
ð1

0

dvzf 1mðus; vx; vy; vzÞ: (87)

Using the quasineutrality relation ns ¼ nðuÞ ¼ expð�usÞ
[see Eq. (64)] and condition f 1mðus; vx; vy; vzÞ ¼ 0 at vz¼ 0,

we find

1

ns

ð1
0

dvz
1

vz

@

@vz
hf 1m us; vzð Þi ¼ 1 ; (88)

hf 1mðus; vzÞi ¼
ð1
0

dvx

ð0
�1

dvyf 1mðus; vx; vy; vzÞ : (89)

Hence at the MPS edge, the Bohm criterion is fulfilled also

in the marginal form [cf. with Eq. (51)]. By means of the

explicit expression of the distribution function f 1m from Eq.

(82), the criterion (88) acquires the form

1

ns

a
8p

I umð Þ
us � umð Þ3=2

ðus

um

du0
dg u0ð Þ

du0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u0 � um

p ¼ 1 : (90)

V. DEBYE SHEATH

Traveling from the unperturbed plasma to the wall, the

ions are first accelerated along the magnetic field lines in the

photon correlation spectroscopy (PCS). In the MPS, they are

reoriented towards the wall; and finally in the DS, they

should strongly accelerated in the direction normal to the

wall. The gradually increase of the potential in the MPS ends

with the formal field singularity at u ¼ us, representing the

MPS edge. The quasineutral MPS cannot account for the

boundary condition at the wall. It must be supplemented by

the DS with characteristic scale-length kD, where the space

charge becomes important. To resolve the shape of the

potential in the thin DS, it is convenient to use appropriate

space variable n¼ z/kD. On this scale, the MPS edge is

infinitely remote. Therefore, we have the boundary condition

u! us for n!�1 (or equivalently @u=@n for u! us).

According to the relation eDm ¼ ðkD=qiÞ ! 0 from Eq.

(85), it follows that the ion distribution function in the DS fsh

must depend on the combination ðv2
z=2Þ � u. Hence, like as

it was made in Sec. IV [see Eq. (60)], there is no self-

consistent kinetic problem, but the ion distribution function

in the sheath should be explicitly determined from the MPS

distribution (82) at the sheath edge

fshðv2
z=2� usÞ ¼ f iðus; vx; vy; vzÞ : (91)

As a result, we find

f sh ¼ f0mþ f1m

¼ 1

p
d v2

z þ v2
y � 2 u�umð Þ

h i
S vx;umð Þ �

a
p

ðu
um

@g u0ð Þ
@u0

�
H v2

z þ v2
y � 2 u0 �umð Þ � vy � g uð Þ � g u0ð Þ

� �� �2
n o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

z þ v2
y � 2 u0 �umð Þ � vy � g uð Þ � g u0ð Þ

� �� �2
q

� vy� g uð Þ � g u0ð Þ
� �	 


du0

� vxS vx;umð Þ
@

@u
þ
@S ux;umð Þ

@vx

� �

� d v2
z þ v2

y � 2 u�umð Þ
h i

H vzþ e1ð ÞH �vyþ e2ð Þ : (92)

According to relations (72) and (73), the product of their

left-hand sides is of the order of a, ðus � umÞðgs � ðgmÞ
/ a. Neglecting terms of the order of a2, we can simplify the

expression (92) and obtain

f sh ’
1

p
d v2

z þ v2
y � 2 u� umð Þ

h i
S vx;umð Þ

� a
p

ðu
um

@g u0ð Þ
@u0

vyH v2
z � 2 u0 � umð Þ

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

z � 2 u0 � umð Þ
p du0

� vxS vx;umð Þ
@

@u
þ
@S ux;umð Þ

@vx

� �

� d v2
z þ v2

y � 2 u� umð Þ
h i

H vz þ e1ð ÞH �vy þ e2ð Þ: (93)

Carrying out the integration over velocity for the ion density,

we find

n uð Þ ¼ e�um þ a
4p

I umð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� um
p

ðus

um

@g u0ð Þ
@u0

du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� u0
p : (94)

Here, u � us; and at u ¼ us, the right-hand side of Eq. (94)

equals to the electron density at this point nðusÞ ¼ expð�usÞ
[cf. with Eq. (87)]. The quantity IðumÞ is defined by Eq.

(69).

A. Potential profile in the DS

Introducing new space variable n into Poisson’s equa-

tion (9) yields
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@2u

@n2
¼ n uð Þ � e�u: (95)

Here, in n, the expression (94) is implied. Using the bound-

ary condition @u=@n! 0 for u! us, after integration of

Eq. (95), we get

1

2

@u
@n

� �2

¼ R uð Þ ; (96)

R uð Þ¼e�um u�usð Þ

þ a
2p

I umð Þ
ðus

um

du0
@g u0ð Þ
@u0

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�um
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u�u0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
us�um
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
us�u0

p
( )

:

(97)

This equation can be again integrated to yield the potential

distribution in the form n ¼ nðuÞ. Using the wall boundary

condition u ¼ uw at n¼ n(w) Eq. (96), we present in the

form convenient for the numerical calculations

n� nw ¼
ðu

uw

du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R u0ð Þ

p : (98)

The resulting sheath potential profile related to the wall

potential uw ¼ 5:4 (floating potential in Argon) is shown in

Fig. 8. To analyze the DS entrance vicinity, we expand RðuÞ
in the series in powers of ðu� usÞ. Restricting ourselves

with the third power, from Eq. (96), we obtain

n ¼ n0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

@3R uð Þ=@u3
� �

us

s
� u� usð Þ�1=2 (99)

and the Poisson’s Eq. (95) in this approximation acquires the

form

@2u

@n2
¼ 1

2

@3R uð Þ
@u3

" #
us

u� usð Þ2: (100)

The integration constant n0 can be found by comparison of

the dependence (98) with numerical curve given in Fig. 8. In

obtaining (99) and (100), we have taken into account that in

the expansion of RðuÞ, the coefficient in front of the first

power ðu� usÞ is zero due to quasineutrality condition at

u ¼ us expressed by Eq. (94). The coefficient at ðu� usÞ2
also vanishes on account of the relation (88) [or Eq. (90)],

representing the Bohm criterion.

B. Matching of the MPS and the DS

The situation is quite analogous to the fracture on the

shape of the electric potential at the CPS–MPS interface: on

the MPS scale, g¼ z/qi, the electric field in the eDm ¼
ðkD=qiÞ ! 0 approximation again runs into a singularity;

while on the DS scale, n¼ z/kD, the MPS–DS interface is

shifted to the infinity, n ! � 1, (u! us), where the elec-

tric field according to Eqs. (96) and (99) tends to zero.

Therefore, for matching such distinctly different sublayers as

the MPS and the DS (the MPS is quasi-neutral, while in the

DS the influence of the magnetic field is negligible and the

space charge plays an important role), we can repeat the pro-

cedure used for matching the CPS with the MPS given above

in Sec. IV B. To bridge the MPS and the DS, we again

assume the existence of an intermediate region between

them. Thanks to the smallness of parameters eDm ¼ ðkD=qiÞ
and eDm ¼ ðqi=‘Þ, both MPS and DS are collisionless in their

bulks. The intermediate scale analysis must now account (in

lower non-vanishing order) both for the space charge and the

finite value of the ion cyclotron radius. Combining Eqs. (83),

(84), and (95), we obtain

eDm
@2u
@g2
¼
ð

dv f i u;vx;vy;vz;gð Þ� f i u;vx;vy;vz;gð Þ
n o

: (101)

We are interested in the case when eDm ! 0 and restrict our-

selves with analysis of very small region near the sheath

edge u 	 us. Anticipating further that the difference

between gðuÞ and gðuÞ fades quickly away into the pre-

sheath region, for gðuÞ we can use the approximation (75).

Close to the u 	 us region, we can repeat the simplifying

procedure, made at the transition from Eq. (92) to Eq. (93);

and after integration over velocities, we find

eDm
@2u
@g2
¼ a

4p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u� um
p

ðu

um

du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0 � um

p
"

� @g u0ð Þ
@u0

� @g u0ð Þ
@u0

� �
�
ðu

us

du0g0 u0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0 � um

p
#
: (102)

The intermediate scale variables, as usually,18 we define in

the following way:

u ¼ us þ d � w ;
g ¼ gs þ bd2 � f ;
g ¼ gs þ bd2 � f ;

(103)

where b is given by Eq. (76). For u close to us, Eq. (101) in

these variables acquires the form
FIG. 8. Potential variation in the Debye sheath. The curves for a¼ 0.08727

and a¼ 0.05236 coincide.
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@2w

@f2
¼ a

4p
I umð Þ

d5b3

e2
Dm us � umð Þ

" #

�
ðw

�1
dv f0 vð Þ � f

0
vð Þ

h i
�
ðw

0

dvf
0
0 vð Þ


 �
; (104)

with fðvÞ ¼ g � gs

bd2
¼ �v2 : (105)

Choosing

d ¼ 4p
aI umð Þ

e2
Dm us � umð Þffiffiffi

2
p

b2

" #1=5

; (106)

we obtain the representation of the Poisson’s equation in

form

@2w

@f2
¼ fþ w2 ; w ¼

ffiffiffi
2
p

w : (107)

This intermediate equation represents the Painleve’ equation.

In obtaining of Eq. (107), the condition of fast fading of the

difference ½fðcÞ � fðvÞ� at moving away from the sheath

edge inside of the presheath is used. Neglecting the space

charge term @2w=@f2, we obtain the presheath solution

fðwÞ ¼ �w2 ; (108)

which corresponds to Eq. (75). On the other hand, keeping

the space charge and neglecting the influence of the mag-

netic field, represented by the first term in the right-hand side

of Eq. (108) [cf. with Eq. (100)], we derive the sheath

approximation of the intermediate solution

fshðwÞ ¼ f0 �
ffiffiffi
3
p

w�1=2 : (109)

Similarity with Eq. (99) is obvious. At fshðwÞ ! f0, the

approximation w runs into singularity, w!1. The place of

this singularity f0 ¼ 2:97 is decisive for the consistent

“placement” of the wall position.22 This “placement” is con-

nected with the “eigenvalue” problem of the PWT theory22 that

is not considered here. Using Eqs. (72), (76), and (103) for the

characteristic scale-length of the intermediate region, we find

l ¼ 1ffiffiffiffiffi
As

p eum F As

� �( )
k4=5

D q1=3 : (110)

In Fig. 9, the dependences of the full solution fðwÞ together

with its presheath fðwÞ and sheath fshðwÞ approximations are

shown. Obviously, the function fðwÞ indeed is a link that

provides a smooth transition between the presheath and

sheath solutions for small but finite eDm.

VI. SUMMARY AND DISCUSSIONS

We have followed the “beaten track” of the MPWT inves-

tigation starting our derivations from the CPS and proceeding

to the position where the wall boundary condition u ¼ uw is

fulfilled.13,18 The definition of the wall position is directly con-

nected with solving of the so-called “eigenvalue problem.”

Physically, this problem reflects the fact that the ion produced

rate must be equal to the rate of ion loss onto wall. Obviously,

this “plasma balance” condition should be kept.

In this paper, we have provided a kinetic analysis of the

MPWT layer under condition that the magnetic field intersects

the wall at a small angle a� 1. Plasma is assumed to be

weakly ionized and both the charge exchange collisions of ions

with neutrals and ions’ creation at the neutrals’ ionization by the

electron impact are taken into account. The angle a is used as

small parameter and the ion distribution function is expanded in

series of powers of a, restricting ourselves with its first power.

We have succeeded to reduce the ion kinetic equation in

the CPS to the form, which is quite identical to the kinetic

equation for the guiding center.14,15 The total solution of our

problem than is determined by the self-consistent potential and

the ion distribution function (DF) in the CPS, starting from

which all other quantities can be found. Following to the gen-

erally accepted procedure, the MPS and the DS entrances are

defined as points where the electric field runs into infinity, and

fulfillments of the Bohm–Chodura and the Bohm conditions

are there confirmed, respectively. The CPS–MPS and the

MPS–DS interfaces are used as boundaries that allow to con-

nect the ion DF in the MPS with the DF in the CPS (already

known from the solution of the CPS kinetic equation) and fur-

ther connect the DF in the DS with the DF in the MPS.

The intermediate scale analysis is performed to describe

the CPS–MPS and the MPS–DS transitions and to enable

smooth matching of these neighboring sublayers.

Here, it should be mentioned that under our conditions:

(i) These quite expectable results can be obtained only in

the case, if in the MPS region the ions moving

towards the wall do not outline a complete Larmor-

circle (see above Sec. IV). They move in the positive

z-direction and vy component of their velocity, start-

ing from the CPS edge (in our coordinate system, see

Fig. 2) is negative. Obviously, vy¼ 0 at the MPS

edge, where the electric field (directed along the z-

axis to the wall) is infinite. As it is mentioned in

Sec. IV, some indication of possibility of such a situa-

tion is given in Ref. 19 and also illustrated in Ref. 1,

(see p. 99).

FIG. 9. Intermediate solution.
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(ii) The intermediate scale length lm for the CPS–MPS transi-

tion is rather small. In frame of the A3S, when

emc ¼ ðqi=lÞ ! 0, the ions assumed to be fastened to the

magnetic field-lines, qi¼ 0; and at the transition into the

MPS region, they acquire some finite cyclotron radius.

The eigenvalue problem originated from the “plasma

balance” and investigations of particle and energy fluxes to

the wall we defer to future investigation.
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APPENDIX: ANALYSYS FOR f 2
i

Below we show that in the case of cold neutrals (cold

ion source), the distribution function of ions f�i , moving with

negative vz< 0 velocity, equals zero.

It is obvious that at the non-reflected wall, where

u ¼ uw, or at the DS entrance, where u ¼ us and the elec-

tric field, directed towards the wall, is infinite, there are no

ions with vz< 0 velocity. Hence these points can be

employed in the formulation of boundary condition for f�i .

The system of the characteristic equation for the kinetic

equation (5), we represent in the form

vz
dvx

dz
¼ vy

qi

sin a ; (A1)

vz
dvy

dz
¼ 1

qi

vz cos a� vx sin af g ; (A2)

vz
dvz

dz
¼ @u
@z
� vy

qi

cos a ; (A3)

vz
dfi

dz
¼ 1

kcx
d vð ÞC zð Þ � jvjfi
	 


: (A4)

Contrary to two others one constant of integration, we can

find in the explicit form

Cz ¼ fv2
z þ v2

y þ v2
x � 2uðzÞg1=2 ; (A5)

Cy ¼ Cyðvx; vy; vz; zÞ ; (A6)

Cx ¼ Cxðvx; vy; vz; zÞ : (A7)

It is assumed that one can find also inverse functions

vx ¼ vxðC; zÞ ; (A8)

vy ¼ vyðC; zÞ ; (A9)

vz ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

z � v2
xðC; zÞ � v2

yðC; zÞ þ 2uðzÞ
q

; (A10)

where C � fCx;Cy;Czg. From Eq. (A4) then using relations

(A1)–(A10) after straightforward calculations for the � ion

distribution function with negative vz velocity, we obtain

f�i v;uð Þ ¼�
2

kcx

ðu

du0
dx u0ð Þ

du0
d v2

z þ v2
y þ v2

x þ 2 u0 �uð Þ
h i

� d vx C vð Þ;u½ Þ;u0
� �	 


� d vy C vð Þ;u½ Þ;u0
� �	 


�C z u0ð Þ½ �exp �
ðu

u0
du00

dz u00ð Þjv C v;uð Þ;u00
� �

j
du00vz C v;uð Þ;u0

� �
( )

þf
�
i C v;u0ð Þ½ �

� exp �
ðu

du00
dz u00ð Þjv C v;uð Þ;u00

� �
j

du00vz C v;uð Þ;u0
� �

( )
: (A11)

The arbitrary function f i½Cðv;u0Þ� should be defined by the

boundary conditions

f�i ðv;u1Þ ¼ 0 ; with u1 ¼ us ; ðor u1 ¼ uw Þ : (A12)

Finally, we find

f�i ðv;u1Þ¼�
2

kcx

ðu1

u
du0

dzðu0Þ
du0

�d½v2
zþv2

yþv2
xþ2ðu0�uÞ�

�df½vx½CðvÞ;uÞ;u0�g�df½vy½CðvÞ;uÞ;u0�g�C½zðu0Þ�

�exp �
ðu

u0
du00

dzðu00Þ
����v½Cðv;uÞ;u00�

����
du00vz½Cðv;uÞ;u0�

8><
>:

9>=
>;: (A13)

Existence of the first d-function in the integrand indicates

that f�i ðv;u1Þ ¼ 0.
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