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ABSTRACT 
    The paper presents approach to solve a problem of optimum cutting with the particular stock. 
This problem has already been tackled via developing and applying a first version of the Hybrid 
Grouping Genetic Algorithm (HGGA) code (Kos and Duhovnik, 2002) employed in the opti-
mum cutting plan. It turned out that the slightly upgraded version of the code show a wider 
applicability and can apply to many problems of practical interest like cutting, packing, produc-
tion scheduling, and planning. Many production environments entail additional requirements 
that should be weighted during the search for an optimum solution. We present the motivation, 
flowchart and capabilities of the code and results obtained on a case of interest, i.e., we have 
shown how the hybrid genetic algorithm can be used as heuristics which, provides quality pack-
ing for cutting large items. The problem can be effectively tackled, provided practical require-
ments and limitations are taken into consideration. Domain-specific knowledge and local hill-
climbing in the genetic algorithm has turned out to be helpful in many aspects of the optimization 
process. The HGGA presented is robust and easy to use, as there are only few parameters with a 
large range of successful operation. Directions for possible future developments are discussed.  
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1    Introduction 
 

The problem of cutting optimization frequently arises in steel structure production where the pack-
ing of item lengths of equal cross-sections into larger beams for cutting occurs. Problem is related 
to the area of Cutting and Packing (see Wäscher et al., 2007; and references therein) with require-
ments that are normally specific to the type of production. In particular steel structure production 
the beams of standard lengths are cut into smaller pieces. Their cost per unit weight/length is con-
stant. A structural steel is limited to small number of standard lengths to accommodate transpor-
tation, handling and storage. Big consumers can also order custom sized beams for the same 
price from suppliers. But at the end, as always, the decision for order is based on availability and 
total production cost. To reduce the cost, as little as possible waste is preferable. Further, any 
combination of standard lengths is feasible in order to minimize waste. Beam lengths can also 
comply with some internal standard of the final producer as steelworks are flexible enough to 
provide a batch of lengths up to some maximum (e.g. 12m). Similar philosophy of the sup-
ply/order chain can be found in other disciplines with different production characteristics. 
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Figure 1:  A free-form structure and the corresponding lengths histogram of total 704 I-beams distrib-
uted into 100mm wide bins. No small items and few large are used for support structure. 
 
In particular production this method minimizes costs, transport logistics and enables production 
flexibility. In so doing, cutting/sawing can be planned at the designing stage, with production ma-
terial not yet available.  The preferred practice is then to order beams of standard lengths (also 
called ‘bins’) and cut them with minimal trim loss.  After dimensions have been established, 
production possibilities and orders are examined.  To illustrate practical implications of the prob-
lematic we show in Fig. 1 free-form structure and corresponding distribution of I-beams lengths 
that are used as support structure. Lengths of all beams vary and there are no two beams alike. One 
can notice that average length is 3m and that there are few larger beams, some smaller and no 
small lengths. In such cases we can expect that packing into standard sizes will occur with 2 
items when sawing from 6m beams and 4+ when using 12m beams.  In any case, we expect 
that perfect packing will be hard to achieve and that substantial waste can occur, if sawing is not 
carefully planned. Unless there are cost justifications in selecting different bins the tendency is to 
use as little as possible of various lengths to simplify orders and transportation to the works. 

Disregarding available items from the inventory status data, a simplified approach to cut-
ting optimization from a list of available lengths can be formulated as the Variable-Sized Bin 
Packing Problem (VBPP). Since the VBPP is a NP-hard problem with exponential time for glob-
al optimization (Friesen and Langston, 1986), only approximation algorithms are feasible to ap-
ply. Several approximation algorithms have been studied so far, mostly for the online case (see 
Coffman et al., 2007; for a survey) with emphasis on the worst-case analysis for variations of 
well-known classical bin packing algorithms, such as First-Fit, Next-Fit, Best-Fit, with various 
opening and closing rules (Burkard and Zhang, 1997). The offline VBPP, which is the subject of 
our research, has been sparsely studied so far.  Epstein and Levin (2008) present an approxi-
mation scheme based on Murgolo (1987) ideas with a linear programming formulation of the 
VBPP, which reduces the number of item sizes by rounding. The linear objective function is im-
plicitly constrained and solved with the Ellipsoid method by the separation oracle. Unfortunately, 
computational experience with Ellipsoid Algorithm showed a disappointing gap between the the-
oretical promise and practical efficiency for solving implicitly given linear programs (Gröetschel 
et al., 1993).  Computational approach to optimization mimics some natural processes (e.g. 
simulated annealing) and implicitly “believes” that this leads to optimal solution. To widen the 
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search, stochastic processes (e.g. genetic algorithms) are applied with local search meta-
heuristics. Scholl and Klein (1997) uses Tabu search meta-heuristics to prevent cycling to 
previous optimal solution space. Genetic algorithms (GA) gained its reputation as the most 
popular stochastic optimization algorithms. Classical GA encoding with constant-size chromo-
somes leads to invalid solutions that even repair operator cannot compensate. Falkenauer (1998) 
proposed variable-sized encoding (GGA) that treats bins as groups. This arguably violates orig-
inal theory of the GA hyper-plane sampling, as do violate all derived methods (e.g. Memetic) 
with additional meta-heuristics. In fact, various ideas can be applied in pursuit to the “nice” op-
timum solution. Performance of ideas implemented is then verified by practical (usually hard) 
examples. In the presence of readily available computational power, approach with stochastic 
sampling and meta-heuristics is often the only one that can provide some optimized results in-
cluding all specifics of the production. 
 

2    Hybrid Grouping Genetic Algorithm 
 

Here we concentrate in solving problem specifics presented in Introduction. Examining the 
problem distribution in Fig. 1 again we notice that there are no small items.  Secondly, prob-
lems are regarded as offline, i.e., there is sufficient computational time available to solve the 
cutting problem with a minimal waste.  Cutting stock can be variable if particular judgments of 
supply and transportation costs are obeyed. Considering the size of the problem we start from 
adaptation of our HGGA (Kos and Duhovnik, 2002) and apply some additional specializa-
tions and techniques tailored. As VBPP can’t specify optimal solution (stopping criterion) the 
whole interface to the optimization can be regarded as a simulation where all parameters can be 
controlled and even perturbed during the search. Such approach is not uncommon (see Kljajić et 
al., 2003) when integer-programming like decisions needs to be monitored. The framework of the 
HGGA, as a population heuristic method, works in various steps, which are repeated several times 
to reach the desired packing when searching for the best solution. General steps used in the VBPP 
are described below: 
 

Step 1.  The initial population (100 individuals) is generated as a set of valid chromosomes using 
grouping genetic encoding. The only requirement is that it is capable of producing 
valid chromosomes which are diversified in search space.  To provide good initial 
population, we implemented VBBk by Burkard and Zhang (1997). 

Step 2.   Evaluation determines the fitness f of each individual.  Promotion of full bins 
f=1/N ∑ i=1..N (Fi/Ci)k  is obtained with exponent k > 1. N is the number of bins used 
for individual, Fi  the sum of the items in i-th bin, and Ci  the capacity of the i-th bin. 

Step 3.  Selection (duplication) generates an intermediate generation with a doubled number of 
individuals.  The probability of copying a member into the intermediate generation is 
defined by the member fitness using Stochastic Universal Sampling. 

Step 4.  Crossover is an operation which passes properties of the selected parents to their off-
spring. GGA employs random bin range selection from two random parents. Com-
mon items are removed and assigned for use in Adaptation. Number generated of in-
dividuals remains the same during the search. 
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Step 5.  Adaptation for the VBPP is divided into two consecutive procedures: a) Local optimi-
zation is used to repack the eliminated elements and possibly improve “repair” al-
ready packed bins; b) For the rest of unassigned items new bins are opened with best 
fitness by solving Multiple Subset Sum Problem (MSSP) with an algorithm based on 
the separability property by Horowitz and Sahni (1974). 

Step 6.  Mutation is sparsely applied to introduce diversity into the population by randomly elim-
inating the worst and some random individuals. Adaptation is applied afterward. 

Step 7.  Stop criteria should be verified with Step 2 by setting acceptable level, number of genera-
tions or manual halt. Cycling continues with Step 3. Result is given by the best individ-
ual that is preserved during search. 

 
Again, we refer to (Kos and Duhovnik, 2002) for details, and (Falkenauer, 1998) for introduction. 
 
3    Results 
 

As an example of typical I-beam length distribution as shown in Fig. 1 we performed comparison 
of the HGGA for different bin sizes. In Fig. 2(a) we reduced VBPP to classical BPP and tried to 
solve the problem by single bin size. Such use is justified with the rationale of simplicity. 

 
 

Figure 2:  (a) Single bin performance for lengths 6m, 7m, 9m and 12m compared to (b) variable-
sized solution with lengths 5m, 6m and 7m. Thick lines represent preserved best individual whereas thin 
lines show best current generation fitness. 
 

With 3m mean length and no small items one can expect best results at multiples of that size. This 
is evident for lengths 6m, 9m and 12m. Increasing the size to 7m does not improve overall fit-
ness. Surprisingly, we found a “perfect” fit f = 0.994 with the largest available I-beam after 
just 3450 generations steps.  However, using 12m I-beams is unpractical for transportation and 
handling. Instead we tried VBPP lengths that sum up to 12m. Fig. 2(b) shows solution where 
lengths of 5m, 6m, and 7m were permissible as they can be ordered with a single cut at works 
with no additional penalties. Fitness f = 0.991 was obtained with 62x5m, 245x6m and 29x7m 
beams with a majority of two items per bin. Additional examples showed similar characteristics on 
performance with running times from few minutes to an hour. 
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4    Conclusion 
 

We have shown how the hybrid genetic algorithm with meta-heuristics can be used for packing 
large items with variable-sized bins of particular sizes. To reduce computational complexity of 
the exact MSSP we introduced adaptation with reasonable number of the “repair” items. In the 
presence of no-free-lunch theorem for optimization we can interpret our results as applicable. 
We are aware that domain specific knowledge can improve overall results. So does the persis-
tence of the simulation operator. GA includes many configurable parameters that can be used to 
support him. At present stage results are satisfactory, but additional requirements like even dis-
tribution of long and short beam sizes are hard to implement.  Although convergence to “nice” 
solution is fast we are (always) faced with the question: “Can we get it better than this?” One 
of the weaknesses of GA is repeating fitness evaluation. To overcome this one can apply Tabu-
search like look-up table and broaden the search space on the expense of computational speed. 
Parallel processing on clusters, graphics processors (GPUs) or commodity hardware can nowa-
days be employed for that.  
 
REFERENCES 
 

R. E. Burkard and G. Zhang. Bounded space on-line variable-sized bin packing. Acta Cybernetca, 
13(1):63–76, 1997. 

E. G. Coffman, J. Y.-T. Leung, and J. Csirik.   Variable-Sized Bin Packing and Bin Coveing, 
chapter 34, pages 34.1–34.11. Chapman and Hall/CRC, 2007. ISBN 978-1-58488-550-4. 
doi:10.1201/9781420010749.ch34. 

L. Epstein and A. Levin. An APTAS for generalized cost variable-sized bin packing. SIAM Jour-
nal on Computing, 38(1):411 – 428, 2008. ISSN 00975397. doi: 10.1137/060670328. 

E. Falkenauer. Genetic Algorithms and Grouping Problems. John Wiley & Sons, 1998. 
D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM Journal on Computing, 

15 (1):222–230, 2 1986. 
M. Gröetschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization. 

Springer-Verlag, Berlin, New York, etc., 2nd corrected edition, 1993. 
E. Horowitz and S. Sahni. Computing partitions with applications to the knapsack problem. 

Journal of the ACM, 21(2):277–292, 1974. 
M. Kljajić, I. Bernik, and U. Breskvar.  Production planning using simulation and genetic algo-

rithms in multi-criteria scheduling optimization, pages 193–208. P. Lang verlag, Frankfurt 
am Main, 2003. ISBN 978-3-631-50407-9. 

L. Kos and J. Duhovnik. Cutting optimization with variable-sized stock and inventory status data. 
Int. J. Prod. Res., 40(10):2289–2301, 2002. 

F. D. Murgolo. An efficient approximation scheme for variable-sized bin packing. SIAM Jounal 
on Computing, 16(1):149–161, Feb. 1987. 

A. Scholl and R. Klein. Bison: A fast hybrid procedure for exactly solving the one-
dimensional bin packing problem. Computers & Operations Research, 24(7):627–645, 1997. 

G. Wäscher, H. Haussner, and H. Schumann. An improved typology of cutting and packing 
problems. European Journal of Operations Research., 183(3):1109 – 1130, 2007. ISSN 0377-
2217. doi:10.1016/j.ejor.2005.12.047. 


